Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.	12.04 ТЕОРЕТИЧЕСКАЯ ФИЗИКА
	Статистическая физика
наименование д	исциплины (модуля) в соответствии с учебным планом
Направление подготов	ки / специальность
	03.03.02 ФИЗИКА
Направленность (проф	оиль)
03.	03.02.01 Фундаментальная физика
Форма обучения	очная
Гол набора	2019

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили
д.фм.н., профессор, М.М.Коршунов;к.фм.н., доцент, Ю.Н.Тогушова
лопжность инициалы фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Изучение курса «Статистическая физика» ставит своей целью сформировать у студентов знания об основных законах и свойствах термодинамики равновесных процессов, принципах статистической физики, свойствах конденсированных термодинамических сред, неидеальных статистических систем, случайных процессах и физической кинетики. В предполагается изучить основные экспериментальные рамках закономерности, лежащие в основе законов термодинамики, статистический метод описания классических и квантовых макроскопических взаимосвязь законов термодинамики и статистической физики, неравновесную термодинамику и физическую кинетику, познакомить с основами физики взаимодействующих систем и методами их описания. Курс выработать навыки использования знаний и умений для моделирования физических явлений и проведения численных расчетов.

1.2 Задачи изучения дисциплины

Познакомить студентов с основными моделями макроскопических систем, используемых в рамках термодинамики и статистической физики, и продемонстрировать действие физических законов, а также эффективность методов термодинамического и статистического описания равновесных и неравновесных процессов в макроскопических системах на примере данных моделей.

Рассмотреть основные экспериментальные закономерности термодинамических явлений, статистические методы описания свойств вещества, математическую форму основных уравнений структуру статистической физики, равновесной и неравновесной термодинамики и кинетики, особенности ИΧ использования различных явлений, а также методы описания кинетических явлений и способы нахождения обобщенных кинетических коэффициентов.

Раскрыть роль статистических закономерностей в физике конденсированных сред.

Рассмотреть основные методы экспериментального и теоретического исследования термодинамических явлений, использование термодинамических явлений в современных технологиях.

Проанализировать основные принципы моделирования термодинамических явлений, установить область применимости этих моделей, рассмотреть способы вычисления физических величин, характеризующих явления.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ОПК-3: способностью использ	 овать базовые теоретические знания
достижения компетенции	оапланированные результаты обучения по дисциплине
Код и наименование индикатора	Запланированные результаты обучения по дисциплине

фундаментальных разделов опрофессиональных задач	общей и теоретической физики для решения
ОПК-3: способностью	знает термодинамическое описание макросистем;
использовать базовые	статистическая физика равновесных систем и теория
теоретические знания	флуктуаций;
фундаментальных разделов	физическая кинетика и основы неравновесной
общей и теоретической	термодинамики
физики для решения	умеет решать задачи на термодинамическое описание
профессиональных задач	макросистем;
	решать задачи статистической физики;
	решать задачи физическая кинетики и неравновесной
	термодинамики
	Теоретическими методами термодинамики
	Методами статистической физики
	Методами физической кинетики и методом Кубо

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		C	ем
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2
Контактная работа с преподавателем:	4 (144)		
занятия лекционного типа	2 (72)		
практические занятия	2 (72)		
Самостоятельная работа обучающихся:	2 (72)		
курсовое проектирование (КП)	Нет		
курсовая работа (КР)	Нет		
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)		

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины		ятия онного ппа	Семина Практи	птия семин ры и/или ические ятия	Лабора работн	типа пторные ы и/или пикумы	Самосто работа,	ятельная ак. час.
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Te	рмодинамическое описание макросистем								
	1. Объекты исследования термодинамики и стат. физики, цели каждой, взаимодополняемость и первичность. Температура. Энтропия. Работа.	2							
	2. Внутренняя энергия. Первое начало термодинамики. Теплоёмкость. КПД тепловой машины. Цикл Карно. Второе начало термодинамики. Аксиоматика термодинамики – три начала (и нулевое). Принцип Нернста (третье начало) и его следствия.	2							
	3. Термодинамические коэффициенты, соотношения между ними. Отсутствие взаимодействия молекул идеального газа на расстоянии. Термодинамика газа Ван -дер-Ваальса.	2							
	4. Процессы Гей-Люссака и Джоуля-Томпсона. Энтальпия. Термодинамический потенциал (потенциал Гиббса), метод термодинамических функций.	2							

5. Политропические процессы. Поливариантные системы. Химический потенциал. Неравновесные процессы – рост энтропии, парадокс Гиббса.	2				
6. Системы в электрических и магнитных полях: два способа наложения электрического поля, вычисление работы для каждого из способов, природа отличия выражений для работы. Способ измерения работы. Два способа наложения магнитного поля и соответствующие выражения для работы.	2				
7. Экстремальные свойства термодинамических функций. Термодинамические неравнества. Равновесие фаз. Фазовые переходы 1-го рода. Молярная теплота перехода, уравнение Клайперона-Клаузиуса. Равновесие 3-х фаз, тройная точка. Фазовые переходы 2-го рода.	2				
8. Симметрийные свойства фазовых переходов 2-го рода, параметр порядка. Теория Ландау, скачок теплоёмкости. Связь скачков различных термодинамических коэффициентов друг с другом — уравнения Эренфеста.	2				
9. Феноменологическое обобщение теории Ландау фазовых переходов 2-го рода, критические индексы.	2				
10. Математическое введение		2			
11. Квазистатические процессы		2			
12. І закон термодинамики		2			
13. ІІ закон термодинамики		2			
14. Термодинамические функции		2			
15. III закон термодинамики (теорема Нернста)		2			
16. Термодинамика стержней и магнетиков		2			

17. Равновесие фаз			2				
18. Контрольная работа			2				
19. Самостоятельная работа						18	
2. Основы статистической физики равновесных систем		I		l			
1. Квантовые состояния, определения вырождения и энергии системы. Простейшая модель статистической системы — модель линейной цепочки невзаимодействующих спинов в отсутствие внешних полей.	2						
2. Число состояний и степень вырождения. Резкий максимум функции степени вырождения (переход к распределению Гаусса). Энергия магнитной системы. Основное предположение статистической физики, замкнутость системы, вероятность, среднее по ансамблю.	2						
3. Две системы в тепловом контакте. Определение энтропии и температуры. Третье начало термодинамики.	2						
4. Аддитивность и возрастание энтропии, второе начало термодинамики. Магнитное охлаждение, восприимчивость, закон Кюри. Обобщённая энтропия. Две системы в диффузионном контакте. Химический потенциал.	2						
5. Факторы Гиббса и Больцмана. Большая стат. сумма. Вычисление средних по ансамблю, число частиц и энергия. Случай постоянного числа частиц, стат. сумма. Отрицательные температуры.	2						

6. Давление и термодинамическое тождество. Необратимые процессы. Определение энтропии по Больцману. Выражения для свободной энергии и большого термодинамического потенциала через стат. суммы. Свободная энергия Гиббса и энтальпия.	2				
7. Принцип Паули, фермионы и бозоны. Получение функций распределения Ферми-Дирака и Бозе-Эйнштейна. Квантовая теория свободной частицы в ящике со стенками длиной L (одно- и трёхмерный случай).	2				
8. Одноатомный идеальный газ. Классический режим. Химический потенциал, энергия, энтропия и уравнение Сакура-Тетроде. Давление и уравнение состояния идеального газа. Теплоёмкость. Малость флуктуаций числа частиц и энергии в макроскопической системе.	2				
9. Свободная энергия и стат. сумма. Минимум свободной энергии при равновесии. Намагниченность магнитной системы со спиновым избытком 2m, фазовый переход в ферромагнитное состояние при температуре Кюри. Свободная энергия и стат. сумма для идеального газа.	2				
10. Элементы теории вероятностей		4			
11. Распределение Максвелла		2			
12. Распределение Больцмана		2			
13. Распределение Гиббса		2			
14. Квантовое каноническое распределение		2			
15. Каноническое распределение. Квазиклассическое приближение		2			
16. Теорема о вириале		 2			

17. Контрольная работа			2			
18. Самостоятельная работа					18	
19.						
3. Статистические распределения для квантовых газов и тес	рия флуг	стуаций				
1. Применение распределения Ферми-Дирака. Вырожденный ферми-газ. Энергия Ферми. Плотность состояний (орбиталей) для трёхмерного, двумерного и одномерного случаев. Теплоемкость вырожденного ферми-газа, температура Ферми. Теплоемкость в металле.	2					
2. Функция распределения Планка для фотонов. Плотность фотонных мод. Флуктуации числа фотонов.	2					
3. Фононы в твёрдых телах, теория Дебая.	2					
4. Описание фононов как квазичастиц.	2					
5. Применение распределения Бозе-Эйнштейна. Физика бозонов. Жидкий гелий. Бозе-конденсация. Температурная зависимость теплоёмкости. Явление сверхтекучести.	2					
6. Бозе-конденсация: вывод дисперсии квазичастиц для газа взаимодействующих бозонов методом Боголюбова.	2					
7. Матрица плотности, чистые состояния, изменение со временем матрицы плотности. Квантовое уравнение Лиувилля.	2					
8. Флуктуации, дисперсия, относительная флуктуация. Флуктуации энергии, объёма и числа частиц в T-V-N, T-P-N и T-V-µ системах. Флуктуации основных термодинамических величин. Флуктуации чисел заполнения в идеальном газе. Флуктуационный предел чувствительности приборов, формула Найквиста.	2					

9. Фазовое пространство. Теорема Лиувилля			2			Ī		
10. Идеальный ферми-газ			2					
11. Распределение Ферми-Дирака. Условие вырождения			2					
12. Распределение Ферми-Дирака			4					
13. Электронный газ в квантующем магнитном поле			2					
14. Распределение Бозе-Эйнштейна. Фотонный газ			4					
15. Конденсация Бозе-Эйнштейна			2					
16. Распределение Бозе-Эйнштейна			2					
17. Бозе-жидкость			2					
18. Флуктуации термодинамических величин			2					
19. Флуктуации энергии			2					
20. Флуктуации числа частиц			2					
21. Самостоятельная работа							28	
4. Физическая кинетика, основы неравновесной термодинам	ики и ме	етода Кубо)	•	•	•		•
1. Неравновесные состояния и процессы. Предметы								
изучения кинетики и неравновесной термодинамики.								
Функция распределения в кинетике. Разреженный и								
плотный газы. Стохастическое движение в газах	2							
высокой плотности, марковские процессы, уравнение								
Смолуховского и принцип детального равновесия.								
2. Уравнение Фоккера-Планка. Броуновское движение								
частицы в газе или жидкости во внешнем поле.	2							
3. Уравнение кинетического баланса, запись в								
квантовом случае. Пример идеального газа с двумя								
невырожденными уровнями энергии. Система атомов в	2							
равновесии с электромагнитным излучением, вывод								
формулы Планка по Эйнштейну.								
<u> </u>		1				l		

4. Разреженный газ, интеграл столкновений, вывод кинетического уравнения Больцмана. Запись интеграла столкновений через сечение рассеяния.	2				
5. Уравнения переноса Максвелла. Законы изменения массы, импульса, кинетической и потенциальной энергий.	2				
6. Законы сохранения и возрастания энтропии, Н- теорема Больцмана. Функция распределения при локальном равновесии.	2				
7. Стадии эволюции неравновесной системы: первоначальная хаотизация, кинетический этап, гидродинамический этап. Уравнения газовой динамики, необходимость дополнить их феноменологическими уравнениями. Возникновение вязких сил в неравновесных процессах.	2				
8. Неравновесная термодинамика: уравнения баланса массы, энергии, импульса, энтропии. Соотношения Онсагера.	2				
9. Метод Кубо, матрица плотности системы во внешнем поле. Вычисление тензора проводимости вещества, диэлектрическая проницаемость.	2				
10. Теория линейного отклика неравновесной системы на возмущение. Двухвременные функции Грина.	2				
11. Броуновское движение		4			
12. Распределение Пуассона		2			
13. Контрольная работа		2			
14. Самостоятельная работа				8	
Всего	72	72		72	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Квасников И. А. Термодинамика и статистическая физика. Теория равновесных систем: учебное пособие для вузов по специальности "Физика" (Москва: МГУ им. М. В. Ломоносова).
- 2. Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика: учебное пособие для студентов физических специальностей вузов(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 3. Ландау Л. Д., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика: Т. 5. Статистическая физика: учебное пособие для физических специальностей университетов: в 10-ти т.(Москва: Физматлит).
- 4. Киттель Ч., Капица С. П. Статистическая термодинамика: перевод с английского(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 5. Базаров И.П., Геворкян Э.В., Николаев П.Н. Термодинамика и статистическая физика. Теория равновесных систем: учеб. пособие (Москва: Изд-во МГУ).
- 6. Кондратьев А. С., Райгородский П. А. Задачи по термодинамике, статистической физике и кинетической теории: учеб. пособие(Москва: Физматлит).
- 7. Ландау Л. Д., Лифшиц Е. М., Лившиц Е. М., Питаевский Л. П. Теоретическая физика: Т. 9. Статистическая физика: в 10 томах : учебное пособие для физических специальностей университетов (Москва: Наука. Главная редакция физико-математической литературы [Физматлит]).
- 8. Ландау Л. Д., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика: Т. 10. Физическая кинетика: учебное пособие для студентов физических специальностей университетов: допущено Министерством высшего и специального образования ССС? (Москва: Наука, Гл. ред. физ.-мат. лит.).
- 9. Ландсберг П. Задачи по термодинамике и статистической физике: перевод с английского (Москва: Мир).
- 10. Кубо Р. Статистическая механика: перевод с английского: современный курс с задачами и решениями(Москва: Мир).
- 11. Фейнман Р. Ф., Зубарев Д. Н. Статистическая механика: курс лекций (Москва: Мир).
- 12. Кубо Р., Ичимура Х., Усуи Ц., Хасизуме Н., Зубарев Д. Н. Термодинамика: современный курс с задачами и решениями: перевод с английского(Москва: Мир).
- 13. Тогушова Ю. Н., Коршунов М. М. Термодинамика и статистическая физика: учебно-методическое пособие [для практических занятий и самостоятельной работы студентов напр. 010700.62 «Физика» и спец. 010708.65 «Биохимическая физика»](Красноярск: СФУ).
- 14. Коршунов М.М., Тогушова Ю.Н. Статистическая физика: [учеб-метод. материалы к изучению дисциплины для ...03.03.02 Физика, 03.03.02.01 Фундаментальная физика, 03.03.02.07 Биохимическая физика, 14.03.02 Ядерные физика и технологии, 16.03.01 Техническая физика, 28.03.01.02

Материалы микро- и наносистемной техники](Красноярск: СФУ).

- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. 1. Microsoft Office 2007 (или выше)
- 2. 2.Adobe Reader
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. ИСС не используются
 - 5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Занятия проводятся в учебных аудиториях для занятий лекционного и семинарского типа. Аудитории укомплектованы специализированной мебелью, техническими средствами обучения, служащими для представления учебной информации большой аудитории.